Programming approaches

Henning Schulzrinne
Dept. of Computer Science
Columbia University

14-May-02 Advanced Programming
Spring 2002

Programming approaches

data-driven
= Unix filter model
= event-driven
= multiple inputs
= web models
= cgi
= multi-layer model
RPC-based models

14-May-02 Advanced Programming
Spring 2002

Data-driven programming

= transformational
= input stream = f(input, commandline) =
output stream
= errors go to stderr
= status: return code
= e.g. pipe,
= sort —f < in.dat | uniq > out.dat
= Advantages:
= small, modular tools
= easy to script

14-May-02 Advanced Programming
Spring 2002

Data-driven programming

= Problems:
= |ine-oriented output
= doesn't work well for networks
» sort http://www.census.gov/population ©?
= only for shell, not a GUI abstraction
= unconditional, not tree

14-May-02 Advanced Programming
Spring 2002

Event-driven programming

= reactive systems. inputs not all available in
advanced, but instead arrive in endless and
perhaps unexpected sequences
= Examples of events:
= keystrokes and mouse movements
= network requests (e.g., web)
= exceptions (connection failed)
= file input
= directory or file has changed
= resource ready (e.g., slow output device)

14-May-02 Advanced Programming
Spring 2002

Event-driven programming

= Asynchronous vs. synchronous:
= synchronous: wait until operation
completes
= asynchronous: program is notified when
operation completes

14-May-02 Advanced Programming
Spring 2002




Events in Unix

= Two event models:
= signals — one bit

= select/poll — wait for file system or network
events

= Related: condition variables (later)
= Some OS are message-based
= Handler or event loop

14-May-02 Advanced Programming 7

Spring 2002

signals

= Software interrupts for asynchronous events
= Similar to hardware interrupts

= Provide no information beyond name
(integer) — SIGxxx
= Causes:
= control keys on terminal
= hardware exceptions:
= divide by 0
= invalid memory reference (SIGSEGV),
= unaligned access (SIGBUS)
= kill() or kill command

= software conditions (SIGURG, SIGPIPE, SIGALRM,
14-May-08]GCH LD) Advanced Programming 8

Spring 2002

Signal handling

= Signals can be ignored (most of them)
or caught
= Default actions:
= ijgnore
= catch
= abort
= abort with core dump

14-May-02 Advanced Programming 9
Spring 2002

signal()

void (*signal(int signo, void(*func) (int)))(int);
= sets signal handler for signo to func
= returns previous disposition
= function:
= SIG_IGN
= SIG_DFL
= handler returns to calling location, exit()
or longjmp()

14-May-02 Advanced Programming 10
Spring 2002

signal()

while (!done) {
do something

}

void handler(int sig) {
done = 1;

}

= only call re-entrant functions:

“A reentrant function does not hold static data over successive
calls, nor does it return a pointer to static data. All data is
provided by the caller of the function. A reentrant function must
not call non-reentrant functions.”

14-May-02 Advanced Programming 11
Spring 2002

Non-re-entrant function

char *strtoupper(char *string) {
static char buffer[MAX_STRING_SIZE];
int index;
for (index = 0; string[index]; index++)
buffer[index] = toupper(string[index]);
buffer[index] = 0;
return buffer;

}

(from AIX manual)

14-May-02 Advanced Programming 12
Spring 2002




Re-entrant function (poor)

char *strtoupper(char *string) {
char *buffer;
int index; /* error-checking needed! */
buffer = malloc(MAX_STRING_SIZE);
for (index = 0; string[index]; index++)

buffer[index] = toupper(string[index]);

buffer[index] = 0;
return buffer;

14-May-02 Advanced Programming
Spring 2002

13

Re-entrant version

char *strtoupper_r(char *in_str, char *out_str) {
int index;
for (index = 0; in_str[index]; index++)
out_str[index] = toupper(in_str[index]);
out_str[index] = 0;
return out_str;

3

14-May-02 Advanced Programming 14
Spring 2002

Non-local jumps

= break, continue, return

= goto: within same routine

= across routines: setjmp, longjmp
int setjmp(jmp_buf env);

void Tongjmp(jmp_buf env, int
val);

14-May-02 Advanced Programming
Spring 2002

15

Signal example

if (signal(SIGUSR1, sigusrl) == SIG_ERR) {
perror("signal™);

}

if (setjmp(jmpbuffer) 1= 0) {
printf("we are done!\n");
exit(l);

}

while (1) {
printf("looping...\n");

void sigusrl(int sig)
{
longjmp(jmpbuffer, 1);

14-May-02 Advanced Programming 16
Spring 2002

longjmp

= Careful: return from the wild

= setjmp () saves stack frame,
sigsetjmp () saves registers, too

= declare variables as volatile!
= can also save signal mask, priority

14-May-02 Advanced Programming
Spring 2002

17

Example: alarm()

unsigned int alarm(unsigned int s);
= generates SIGALRM after s seconds

= returns time to next alarm

= only one pending alarm

= s=0 cancels alarm

= pause () waits until signal

14-May-02 Advanced Programming 18
Spring 2002




Web programming models

= Web is stateless — send request, get
response based on request

= By default, no global variables or
persistent objects

= Like a function call (also with side

effects):
= http://www.people.com/show.cgi?sort=nameage=17
= similar to People::Show(Name,17);

14-May-02 Advanced Programming 19
Spring 2002

Web programming

= No state — add client or server state
= client: cookies encapsulate data
= server: keep track in database (rare)

= State leakage — client may never come
back

= Scripts typically deliver HTML, but can
provide any data (say, video clip)
= typically, unstructured user-oriented data
= <-> RPC

14-May-02 Advanced Programming 20
Spring 2002

Limitations of web model

= We'll experiment a bit later, but...
= Error handling /in band
Conditional programming: many
argument combinations

= user interaction requires new request
submission

= user data checking (JavaScript)

= synchronous — can't notify user if
something changes

14-May-02 Advanced Programming 21
Spring 2002

Remote procedure calls
(RPC)

= Mimic function calls: arguments, return
values, side effects, ...
= But across network -> client/server
computing
= Many, many implementations:
= Sun RPC

= Distributed Computing Environment (DCE), by
DEC and OSF

= Corba
= Java RemoteMethodInvocation
= SOAP (HTTP-based)

14-May-02 Advanced Programming 22
Spring 2002

Common functionality

= Find appropriate server
= by name
= by services offered (“service brokering”)
= Authenticate to server
= Encapsulate requests
= Send across network
= Wait for completion or asynchronous

= Get result and convert to local
representation

14-May-02 Advanced Programming 23
Spring 2002




