
Distributed Segment Tree: Support of Range Query and
Cover Query over DHT

Changxi Zheng1, Guobin Shen1, Shipeng Li1, Scott Shenker2

1 Microsoft Research Asia, Beijing, 100080, P.R.China
2 International Computer Science Institude, University of California, Berkeley

ABSTRACT
Range query, which is defined as to find all the keys in a cer-
tain range over the underlying P2P network, has received a lot of
research attentions recently. However, cover query, which is to
find all the ranges currently in the system that cover a given key,
is rarely touched. In this paper, we first identify that cover query
is a highly desired functionality by some popular P2P applications,
and then propose distributed segment tree (DST), a layered DHT
structure that incorporates the concept of segment tree. Due to
the intrinsic capability of segment tree in maintaining the sturcture
of ranges, DST is shown to be very efficient for supporting both
range query and cover query in a uniform way. It also possesses
excellent parallelizability in query operations and can achieve O(1)
complexity for moderate query ranges. To balance the load among
DHT nodes, we design a downward load stripping mechanism that
controls tradeoffs between load and performance. We implemented
DST on publicly available OpenDHT service and performed exten-
sive real experiments. All the results and comparisons demonstrate
the effectiveness of DST for several important metrics.

1. INTRODUCTION
Distributed Hash Table (DHT) has drawn immense atten-

tions in P2P research field [1] [2] [3] [4]. This is mainly
due to its inherent characteristics such as scalability, self-
healing and self-organizing capabilities, which are also con-
vincingly demonstrated by the recent deployments of P2P
applications where DHT is employed as an underlying in-
frastructure [5] [6].

As a primary design goal, most DHT-based P2P systems
have achieved efficient key lookup, typically at O(logN)
complexity. However, the inherent exact matching in DHT
lookup circumscribes its functionality from a panacea. For
instance, range query, which is defined as to find all the
keys in a certain range over the underlying P2P network,
is difficult to achieve via DHT lookup directly, because the
cryptographic hash function (such as SHA hash) strips the
structural properties on keys. On the other hand, range query
is highly desired in many distributed applications such as P2P
database, distributed computing, and location-aware comput-
ing, as so on [7] [8]. Realizing the challenge of range query,
the research community has proposed a variety of solutions
that address the problem from different angles, as will be
discussed in detail in Section 2.

However, to the best of our knowledge, another highly
desired functionality, cover query, which is to find all the
ranges currently in the system that cover a given key, is
rarely touched. Cover query arises from a number of existing
popular P2P applications:

• In P2P file swarming applications such as BitTorrent [9]
and Avalanche [10], a file is divided into a large number
of slices. Different slices are exchanged among peers
to accelerate the downloading process. Clearly, given
a slice or a range of slices to download, a peer needs
to lookup some other peers who has that slice or range
of slices. Note that a slice is typically represented
by a range between a starting position and an ending
position.

• In P2P streaming applications such as CoolStream-
ing [11] and oStream [12], peers typically cache the
recently played portion of the bitstream in a sliding-
window manner. New comers or the peers who per-
formed random seeks to new positions need to firstly
lookup some (or all) other peers that can potentially
serve them, i.e., whose sliding caching window covers
the desired playing position.

Cover query is actually the dual problem of range query:
the keys inserted in range query correspond to the keys that
may be queried in cover query. And in turn, the ranges
inserted in cover query correspond to the ranges that may be
queried in range query. Recognizing the duality, we hope
to design a single structure that can support both kinds of
query in a uniform way. Moreover, we want to leverage the
inherent advantages of DHT to consolidate the efficiency and
robustness, as many other works did.

The main contribution of this paper is the design of a
distributed structure over DHT to gracefully support both
range query and cover query in a uniform way. The basic
idea is to distribute a segment tree over DHT (hence the
name distributed segment tree, DST) so that the structural
information can be retained and exploited for efficient query.
More importantly, the underlying DHT lookup operations
can be invoked in parallel. Therefore, both range query and
cover query can be achieved at close to O(1) complexity
(in underlying DHT lookup operations) for moderate query
ranges.

2. RELATED WORK
Due to space limitation, we only discuss some most related

works that support range query over DHT and refer readers
to the references therein for other range query solutions that
rely on specially designed underlying structure.

Mercury [8] adopts a circular overlay (the design philos-
ophy is similar to that of DHT except not using hash) and
stores data continuously in order to support multi-attribute
range query. Since it uses specially designed overlay, load

[4, 5][2, 3][0, 1]

[0, 0] [6, 6]

[6, 7]

[7, 7]

[0, 3] [4, 7]

Segment [2, 6]

[1, 1]

Level 1

Level 2

Level 3

Level 4

[0, 7]

Figure 1: Illustration of a segment tree with a range
[0,7] and the optimal representation of range [2,6]
via three subranges.

balancing has to be explicitly considered. Skip graphs [13] is
a distributed data structure that implements range search, but
it requires non-trivial extensions to DHT to maintain the load
balance. There is big differences between DST and Mercury
and Skip graphs because DST is built on top of generic DHT
and adopts highly regular data structure. In this sense, Prefix
Hash Tree (PHT) [7] is most similar to our work, because
both not only use DHT for traditional key-based lookup,
but also impose a new data structure (specifically, trie-based
structure for PHT) onto a generic DHT for richer function-
alities while retaining other inherent benefits of DHT such
as scalability and robustness etc. Therefore, we will mainly
perform comparisons against PHT in our experiments.

However, in the trie-based structure of PHT, keys are stored
only at the leaf nodes that share the same prefix and the client
has no knowledge about the structure of the whole PHT. As
a result, a client has to spend additional DHT get to reach
the leaf nodes with the longest matched prefix. For a D-bit
key, the complexity is O(logD) using binary search and the
search is intrinsically sequential. On the contrary, in DST,
we maintain a highly regular architecture and allow inter-
mediate nodes to store keys as well. The regularity of DST
allows each client to easily calculate a union of minimum
subranges that matches the query range which is key to si-
multaneously support both range query and cover query with
a uniform structure. The client can find the responsible node
of each subrange at O(1) complexity (in underlying DHT get

operation), and the queries of subranges can be executed in
parallel.

As mentioned before, we are not aware any other work
that supports cover query over DHT. In our previous work
[14], we proposed a scheme for efficient service discovery in
asynchronous P2P streaming applications. It is essentially a
cover query problem and is solved using a specially designed
architecture that combines tree and mesh. Although that
work debuted the application of segment tree data structure
for efficient range representation, the design of DST, i.e.,
distributing segment tree over DHT, enjoys all the desired
features inherited from underlying DHT such as robustness,
efficiency, scalability, etc.

3. DISTRIBUTED SEGMENT TREE
In this section, we first describe the data structure that

motivates the DST, its properties that enables efficient range

representations which is crucial to both range query and cover
query. Then we present how to distribute such a structure
over DHT.

The basic data structure of DST, segment tree [15], comes
from the Computational Geometry and is essentially a full
binary tree with the properties listed below. Note that, from
practical interests, we only consider integers in segment tree.

1. The segment tree representing the range of length L
(henceforth the range is called segment tree range) has
a height H = log L + 1.

2. Each node on a segment tree represents a node interval
[sl,k, tl,k], (l ∈ [0, log L] and k ∈ [0, 2l − 1]). Its length
is ll,k = tl,k − sl,k + 1. Clearly, the root node interval
equals to the segment tree range and leaf node interval
is one.

3. Each non-leaf node has two children. The left child and
the right child represent the intervals [sl,k, b sl,k+tl,k

2
c]

and [b sl,k+tl,k

2
c + 1, tl,k], respectively. The union of

the two children covers the same interval as the parent
does.

4. For neighboring nodes on the same layer, we have
sl,k = tl,k−1 + 1 for any k ∈ [1, 2l − 1]. This prop-
erty ensures the continuity of the segment tree.

5. All the nodes from the same layer span the whole seg-
ment tree range. That is,

Sk=2l−1
k=0 [sl,k, tl,k] = L for

any l ∈ [0, logL]. This property ensures the integrity of
the segment tree.

An exemplar segment tree representing the range [0, 7] (i.e.,
L = 8) is depicted in Figure 1. We can easily verify all above
properties.

Theorem 1. Any segment with a range R, (R ≤ L),
can be represented by a union of some node intervals on the
segment tree. There exist multiple possible unions for any
range with R > 1.

Since the segment tree is a full binary tree, it is trivial to prove
the first half of the theorem. For instance, the segment [2, 6]
can be represented by the union of intervals [2, 3], [4, 5] and
[6, 6], as shown in Figure 1. The second half of the theorem
is also evident from the third property of segment tree.

Although there are multiple possibilities to represent a
larger range with unions of smaller subranges, the following
theorem ensures the existence of the optimal representation.

Theorem 2. Any segment with a range R, (R ≤ L),
can be expanded by a union of no more than 2 log L node
intervals.

Proof: Due to the space limitation, we only give a short
intuitive proof. For a given segment S, suppose the longest
part on S represented by a single node is P , then the left part
to P should always be represented by the right children on
segment tree, and the right part should be represented by the
left children. There are at most log L consecutive left children
on the tree and at most log L consecutive right children. So a
segment can be represented at most 2 log L nodes on the tree.

// Parameters:

// s,t: bounds of input segment
// lower,upper: bounds of current node interval
// ret: resulting union of node intervals

SplitSegment(s, t, lower, upper, ret)

if s≤lower AND upper≤t then

ret.add(interval(lower, upper));

return;
mid←(lower + upper) / 2;

if s≤mid then

SplitSegment(s, t, lower, mid, ret);

if t>mid then

SplitSegment(s, t, mid+1, upper, ret);

Table 1: Range splitting algorithm.

The code snippet shown in Table 1 shows the range split-
ting algorithm that constructs the union of minimum node
intervals that expand the range [s, t].

In DST, the segment tree structure is distributed onto DHT
in a way similar to that adopted in PHT: the node interval
[s, t] is assigned to the DHT node (i.e., a peer) associated
with the key Hash([s, t]) using the underlying DHT logic. In
other words, information about any node of the segment tree
can be efficiently located via a DHT lookup operation. This
assignment implicitly reestablishes a connection between the
structural information (node intervals) of the segment tree
and the underlying structureless routing (due to the hash
operation) substrate, DHT. Consequently, both range query
and cover query can be achieved efficiently over DST as will
be elaborated in subsequent sections.

Note that the segment tree structure and the range splitting
algorithm described above can be extended to the multi-
dimensional cases in a straightforward way. We use 2N -
branch segment tree to maintain the N-D structural informa-
tion, instead of using space-filling curve to convert the N-D
space into 1-D space as in many other works. Due to space
limit, we omit the details here.

4. RANGE QUERY
Given a range [s, t], range query returns all the keys that

belong to that range and are currently stored on the P2P
overlay. In this section, we first describe the key maintenance
mechanism of DST that facilitates efficient range query, and
then discuss the range query procedure over DST.

4.1 Insert and Remove
The basic operation of insertion is to insert the given key

to a specific leaf node (as determined by DHT) and all the
ancestors of that leaf node, because the node interval of any
ancestor covers that specific key. In other words, a key should
be inserted to all the nodes whose interval covers it.

Since the segment tree is a full binary tree, every peer on
the network can reconstruct the segment tree locally as long
as it knows the segment tree range.1 As a result, a key can
1It is feasible for most applications by taking the whole
range of key space (could be very large) as the segment tree
range.

be inserted to a leaf node and all its ancestors simultaneously
and in parallel. According to Theorem 2, if up to 2 log L
parallel threads can be executed concurrently for the inser-
tion, then O(1) complexity can be achieved by exploring the
parallelism.

As we know, the node interval on segment tree increase ex-
ponentially against levels. In the extreme case, the root node
is responsible for the whole segment tree range. So, with
above key insertion scheme, the load on nodes across levels
are quite unbalanced. On the other hand, the keys maintained
by a parent node is redundant and is purely for improving the
query efficiency. Therefore, to balance the load, we impose
a constraint (via a system parameter, threshold γ) to limit the
number of keys that a non-leaf node needs to maintain and
design a downward load stripping mechanism to achieve this.

The downward load stripping mechanism works as fol-
lows: each node maintains two counters, left counter and
right counter. The left counter is increased by one if a key
put to this node can also be covered by its left child. Oth-
erwise, the right counter is increased by one. If a counter
reaches the threshold, it triggers a saturation event. If the
insertion of a key triggers either left saturation or right sat-
uration, the key will be discarded. It is safe doing this way
because, as aforementioned, the key maintained on the par-
ent is redundant and is for improved query efficiency. The
negative effect is that a query over the parent’s interval will
have to be split into two queries over the two children’s inter-
vals, which, fortunately, can be executed in parallel. Clearly,
by reducing redundancy embedded in the segment tree, the
downward load stripping mechanism achieves a better trade-
off between load and performance, but does not affect the
correctness of the query.

Removing a key from the DST is quite similar with the
insertion process. That is, the key is removed from the leaf
node and all its ancestors and can be executed in parallel.
The only difference is that it may draw a saturated node
back to unsaturation. In the case, the node may recruit an
additional key from its children. If no additional key is
recruited, it then marks itself as unsaturated. The recruitment
mechanism helps to improve the query efficiency but brings
in some overhead. As a tradeoff, such recruitment can be
performed lazily.

While the robustness of DST mainly depends on that of
the underlying DHT, the redundancy of keys on multiple
intermediate nodes of DST can further enhance the system
robustness. Because the keys maintained on a node can be
recovered from the keys on its children, the query on a node
can be replaced by two parallel queries on its children if that
node failed and not yet recovered.

4.2 Query
Given a range [s, t] under query, the client splits the the

range into a union of minimum node intervals of segment
tree, using the range splitting algorithm. It then uses DHT
get API to retrieve the keys maintained on the corresponding
DST nodes. The final query result is the union of the keys
returned. Again, all the DHT get operations can be called
in parallel to shorten the latency. According to Theorem 2,
it is usually affordable since only at most 2 log L threads is
required for parallel get invocations. So as long as the span

of queried range is moderate, O(1) complexity for range
query can be achieved, as demonstrated in Section 6.

Due to the downward load stripping mechanism, it may
incur additional cost if some of the intermediate nodes are
saturated. In this case, the client has to further retrieve the
keys from the children of the saturated nodes. In the worst
case, it may need up to logL steps. Since the node at higher
level of DST is more likely to get saturated, as a result, the
longer the query range is, the more expensive the query will
be. In practical cases, the query range is much shorter than
the whole key space (i.e., the segment tree range). Therefore,
the additional cost in practical range query is low, as also
demonstrated in Section 6.1.

5. COVER QUERY
In this section, we first describe the key maintenance mech-

anism of DST that facilitates cover query, and then discuss
the cover query over DST.

5.1 Segment Insertion/Remove
Contrary to the range query, here segments need to be in-

serted into or removed from the system. Simply hashing
of segments and putting to DHT would lose the structural
information about the segments, and hence embarrass the
cover query. In DST, the segment is firstly decomposed into
the union of minimum node intervals using the range split-
ting algorithm. Then the segment is inserted to or removed
from the corresponding nodes whose interval belongs to the
union. According to Theorem 2, at most 2 log L nodes would
get involved for any given segment. Note that, unlike the
range query case where the key needs to be propagated to
and stored at all the ancestors of the corresponding leaf node,
it is not needed at all for cover query. Instead, proper prop-
agation to children nodes may be needed for load-balancing
considerations, as will be stated below. Finally, as in the
range query case, parallel insertions/removals can be exerted
to shorten the latency.

Again we use the downward load stripping mechanism to
balance the load between the nodes. A system parameter,
threshold γ, is set to constrain the maximum number of seg-
ments that a node can take. Different from the range query
case, now a node maintains a single counter. Whenever a
segment is stored onto it, the counter will increase by one.
Once the counter reaches the threshold, it triggers a satura-
tion event. The saturation event will cause the segment to be
relayed to its children.

The process of removing a segment from DST is basically
the same as that of insertion. However, due to the downward
load stripping mechanism, it may need to delete the segment
in a recursive way until it succeeds. This can be performed
rather lazily since it has no impact on the search result.

5.2 Query
Due to the duality, the query process is very similar to the

insertion process in range query case. From root to a leaf,
there is a path on which all the nodes cover the given point.2
That means the segments maintained on these nodes could
2DST also supports cover query for any given segment/range
as well. We omit it in this paper due to space limit.

0 1 2 3 4 5 6

x 10
4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

of inserted keys

%
 o

f f
ul

l n
od

es
 o

n
ea

ch
 le

ve
l

Nodes on 8th level
Nodes on 9th level
Nodes on 10th level
Ndoes on 11th level

Figure 2: Percentage of nodes get saturated on dif-
ferent levels of DST.

cover the given point. Therefore, invoking DHT get on these
nodes (in parallel to shorten the latency) could retrieve the
expected segments. From the analysis in Section 3, if the
maximum segment span is L, log L + 1 DHT get threads is
needed for the cover query, which cost only a little system
resource in most cases.

6. EVALUATION
We implemented DST, in Java, upon the publicly available

OpenDHT service [16] on the PlanetLab. We report some
experimental results on range query and cover query in this
section, together with comparisons against that of PHT when
appropriate. Considering the limited space, we only report
some important metrics. And due to the vagaries of load on
PlanetLab upon which OpenDHT is built, the performance
of a single experiment may be elusive. So we repeated each
experiment more than 300 times and calculated the average
results. And for fair comparison against PHT, we run the
same queries using DST and PHT simultaneously from two
co-located computers with the same configurations. More-
over, since both PHT and DST can utilize parallel DHT
operations to shorten the latency, we limit the number of
concurrent DHT operations to 50 (i.e. at most 50 concur-
rent threads) for both of DST and DHT implementations to
prevent the system resource from exhausting.

6.1 Range Query Performance
To measure the performance of range query, and to com-

pare it with PHT, 216 artificially generated keys are pre-
loaded onto both DST and PHT. They are uniformly distrib-
uted over a 220 key space.

6.1.1 Structural properties
Recall that we use a threshold γ to constrain the number

of keys maintained on each node. In the first experiment, we
set γ = 30 and measure the number of nodes that become
saturated as the keys are inserted.

Figure 2 shows a plot of the percentage of saturated nodes
on each level of segment tree during the key insertion process.
All the nodes on the 8th level, where the length of node
interval is 213, become saturated after 10k keys are inserted.
However, no nodes on 12th level are saturated even all 216

keys are inserted. That implies that as long as the span of the
query range is moderate, only a few saturated nodes would

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Insert Latency (sec.)

C
D

F
 o

f P
er

ce
nt

ag
e

of
 In

se
rt

s

DST Implementation
PHT Implementation

Figure 3: Cumulative distribution function (CDF)
of latency for insertion of 1000 items.

be encountered while querying.

6.1.2 Insertion performance
Figure 3 shows the cumulative distribution function (CDF)

of latency of key insertion. The initial leaf node lookup
(which has to be sequential) in PHT prolongs the insertion
latency, which makes PHT spend longer time than DST,
which can lookup in parallel.

6.1.3 Query performance
In this experiment, we generated 500 range queries whose

length is randomly distributed between 27 and 216, and cal-
culate the average query span. We still set γ = 30 and the
block size of PHT is set to 60, where the block size of PHT
limits the maximum number of keys that can be maintained
by a single PHT node. Clearly, a node can maintain at most
60 keys for both DST and PHT.

Figure 4 shows the comparison results between DST and
PHT, using latency and number of DHT get as metrics, re-
spectively. We can see that, when the query range is small,
there are almost no saturated nodes for queries over DST.
This is because the queried nodes are all on the low levels
of DST, which is hard to get saturated. So, for DST, almost
all the DHT get are called in parallel and result in almost
constant latency. This is indeed the case, as can be seen from
Figure 4(a). In the figure, the query latency of DST is very
close to a constant when the query range is between [128,
1024]. On the contrary, PHT needs several sequential steps
to lookup the leaf key. As a result, PHT spends more time
for the small-span range query.

As the query span becomes larger, there are more and
more saturated nodes encountered in both of DST and PHT
queries. So both schemes need to spend some additional get
to propagate the queries to the children of saturated nodes.
This can be seen clearly from Figure 4(a) for the query range
from 1024 up. The divergence between DST and PHT curves
in Figure 4(a) also implies that more saturated nodes are
encountered in PHT than in DST which caused PHT to spend
even longer time in large-span range query.

6.2 Cover Query Performance

6.2.1 Load on DST node
In this experiment, we generate 10k segments randomly

128 256 512 1024 2048 4096 8192 16384 32768 65536
0

5

10

15

20

25

Span of Query Range

A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

se
c.

) DST Implementation
PHT Implementation

(a) Average Query Latency

128 256 512 1024 2048 4096 8192 16384 32768 65536
0

2

4

6

8

10

12

14

16

18

Span of Query Range

A
ve

ra
ge

 #
 o

f D
H

T
 G

et

DST Implementation
PHT Implementation

(b) Average # of DHT get

Figure 4: Comparison of DST against PHT on query
latency on different spans of query ranges: (a) The
average query latency. (b) The average number of
DHT get.

distributed in a 214 key space. The span of these segments
are distributed uniformly from 100 to 5000. Figure 5 shows
the average number of nodes maintained on the DST nodes on
each level. It also demonstrates the effectiveness of the down-
ward load stripping mechanism on load balancing: without
it, the average number of segments on the 5th level of seg-
ment tree is much higher than that on the other levels. With
downward load stripping, the load is significantly smoothed
over across levels of segment tree.

6.2.2 Latency
Figure 6 shows the CDF of latency (averaged over 1000

segments) for segment insertions and cover queries. The
average latency are 6.169 seconds and 3.232 seconds, re-
spectively. We notice that query latency is shorter than in-
sertion latency. This is because the query process is almost
constantly querying all the H DST nodes along a path from
root to a leaf. But the insertion process is elusive. Some
additional cost may be imported by saturated nodes.

7. CONCLUSION
In this paper, we proposed distributed segment tree (DST),

a layered DHT structure that incorporates the segment tree
concept, for the purpose of efficient support of range query

0 3 6 9 12 15
0

20

40

60

80

100

120

140

160

Level on DST

A
ve

ra
ge

 L
oa

d
of

 N
od

es
 o

n
E

ac
h

Le
ve

l
Average load without downward stripping
Average load with downward stripping

Figure 5: The average number of segments main-
tained on the nodes on each level of DST.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Latency of Inserts and Queries (sec.)C
D

F
 o

f P
er

ce
nt

ag
e

of
 In

se
rt

s
an

d
Q

ue
rie

s

Insert
Query

Figure 6: A cumulative distribution function (CDF)
of segment insertions and cover queries for 1000
items.

and cover query. We introduced the segment tree concept
and its properties as the basis of DST’s excellent range query
and cover query capabilities. DST essentially tolerates more
redundancies to achieve efficiency. We designed a down-
ward load stripping mechanism for load balancing purpose.
It possesses excellent parallelizability in query operations
and can achieve O(1) complexity for moderate query ranges.
Since DST is built on top of DHT, it enjoys all the inherent
advantages of DHT such as scalability, robustness etc.

We implemented DST on publicly available OpenDHT ser-
vice and performed extensive real experiments. All the re-
sults and comparisons demonstrate the effectiveness of DST
for several important metrics.

REFERENCES
[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker, “A scalable content-addressable network,”
in Proceedings of the ACM SIGCOMM, San Diego,
CA, Aug. 2001, pp. 161–172.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable Peer-To-Peer
lookup service for internet applications,” in
Proceedings of the ACM SIGCOMM, 2001, pp.
149–160.

[3] P. Druschel and A. Rowstron, “Pastry: Scalable,

distributed object location and routing for large-scale
peer-to-peer systems,” in Proc. of the 18th IFIP/ACM
International Conference on Distributed Systems
Platforms(Middleware 2001), Nov. 2001.

[4] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry:
An infrastructure for fault-tolerant wide-area location
and routing,” University of California at Berkeley,
Computer Science Department, Tech. Rep.
UCB/CSD-01-1141, 2001.

[5] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and
S. Surana, “Internet indirection infrastructure,” in
Proceedings of the ACM SIGCOMM, Pittsburgh, PA,
Aug. 2002, pp. 73–86.

[6] J. Stribling, I. Councill, J. Li, M. F. Kaashoek, D. R.
Karger, R. Morris, and S. Shenker, “Overcite: A
cooperative digital research library,” in Workshop on
Peer-to-Peer System(IPTPS 05), Ithaca, New York,
Feb. 2005.

[7] Y. Chawathe, S. Ramabhadran, S. Ratnasamy,
A. LaMarca, J. Hellerstein, and S. Shenker, “A case
study in building layered dht applications,” in
Proceedings of the ACM SIGCOMM, 2005.

[8] A. R. Bharambe, M. Agrawal, and S. Seshan,
“Mercury: Supporting scalable multi-attribute range
queries,” in Proceedings of the ACM SIGCOMM,
Portland, USA, Sept. 2004.

[9] B. Cohen, “Incentives build robustness in bittorrent,”
May 2003.

[10] C. Gkantsidis and P. R. Rodriguez, “Network coding
for large scale cotent distribution,” in
IEEE Proceedings of the INFOCOM, Miami, FL,
USA, Mar. 2005.

[11] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum,
“Donet/coolstreaming: A data-driven overlay network
for live media streaming,” Miami, FL, USA, Mar.
2005.

[12] Y. Cui, B. Li, and K. Nahrstedt, “ostream:
Asynchronous streaming multicast in application-layer
overlay networks,” IEEE Journal on Selected Areas in
Communications, vol. 22(1), Jan. 2004.

[13] J. Aspnes and G. Shah, “Skip graphs,” in Proc. of
ACM-SIAM Symposium on Discrete
Algorithms(SODA), 2003.

[14] C. Zheng, G. Shen, and S. Li, “Segment tree based
control plane protocol for peer-to-peer on-demand
streaming service discovery,” in Proc. of Visual
Communication and Image Processing(VCIP), July
2005.

[15] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf, Computational Geometry:
Algorithms and Applications. Springer-Verlag,
Berlin, 1997.

[16] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,
S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu,
“Opendht: A public dht service and its uses,” in
Proceedings of the ACM SIGCOMM, 2005.

