SIP Status and Directions

1

Henning Schulzrinne Dept. of Computer Science Columbia University New York, New York schulzrinne@cs.columbia.edu

VON Europe Spring 2000 (Stockholm)

June 20, 2000 - SIP Update

Overview

- SIP perspective
- SIP IETF standardization work
- SIP bake-offs
- SIP-H.323 interworking

What is SIP good at?

- session setup = "out of band"
- resource location via location-independent identifier ("user@domain", tel)
- particularly if location varies rapidly or filtering is needed (i.e., is inappropriate for DNS and LDAP)
- real-time: faster than email
- reach multiple end point simultaneously or in sequence = *forking*
- possibly hide end-point location
- delayed final answer ("ringing") \longleftrightarrow RTSP

What is SIP not meant for?

- bulk transport: media streams, files, pictures, ...
- asynchronous messaging ("email")
- resource reservation
- high-efficiency general-purpose RPC

SIP and Corba

	SIP	Corba	
data	optional fields	versioning hard	
	two-level hierarchy	general, C-like	
hiding	dynamic	directory-based	
multiple	forking proxy	no	
transport	UDP, TCP,	ТСР	
strength	inter-domain	inter-domain	
generality	session set-up	RPC, events,	

SIP servers can benefit from Corba locally for user location and service creation

SIP and XML

- XML will play increasing role in SIP-enabled systems:
 - call processing language (CPL)
 - presence information for SIP as presence protocol
 - device configuration, buddy lists
 - possibly, future version of Session Description Protocol (SDP)
 - back-end for proxy services (e.g., Parlay over SOAP)
- but not appropriate everywhere:
 - can be verbose
 - hard to parse without generic (bulky) parser

Current SIP efforts

- SIP to Draft Standard
- QoS and security preconditions
- inter-domain AAA and billing
- session timer for liveness detection
- early media (PSTN announcements)
- SIP for presence / instant messaging
- SIP-H.323 interworking

- reliable provisional responses
- DHCP configuration for finding SIP servers
- SIP for firewalls and NATs
- caller preferences
- services (transfer, multiparty calls, home)
- ISUP carriage

Status

- Proposed Standard, Feb. 1999 RFC2543
- bakeoffs every 4 months \longrightarrow cross-vendor interoperability tests

_	host	when	companies
1	Columbia University	April 1999	16
2	pulver.com	August 1999	15
3	Ericsson	December 1999	26
4	3Com	April 2000	36
5	pulver.com	August 2000	
6	Sylantro	December 2000	
7	ETSI	April 2001	

SIP implementations

Roughly in order of maturity:

- proxies and redirect servers for service creation
- PC-based user agents Windows and other OS
- Ethernet phones
- softswitches (Megaco/MGCP/...) "crossbar"
- protocol analyzers
- firewall and NAT enhancements
- SIP-H.323 gateways
- unified messaging

On-going SIP implementations

3Com AudioTalk Networks Broadsoft Catapult Cisco Carnegie-Mellon University Columbia University Delta Information Systems dynamicsoft Ellemtel Ericsson

Hewlett-Packard

Hughes Software Systems Indigo Software Iwatsu Electric Komodo Lucent MCI Worldcom Mediatrix Microappliances Netergy Netspeak Nokia

ObjectSoftware Nortel Nuera Pingtel RaveTel Siemens Telogy Ubiquity Vegastream Vovida

SIP-H.323 interworking

- media translation not necessary \longrightarrow much better scaling
- signaling translation easier as H.323 version increases...
- user registration:
 - enum (DNS) per host only, requires awareness
 - export registrations in either direction
- advanced services not yet clear

SIP-H.323 interworking

Conclusion

- SIP is ready for large-scale deployment
- wide diversity of implementations, rapidly moving from bake-off to buyable
- focus on interoperability
- emphasis on one core version with negotiated extensions no SIP versioning, profiles, ... → goal: every SIP-powered device and software can interwork with any other
- extensions for QoS, ISUP carriage, events
- some services, such as transfer, need finishing up
- leverage event model for remote pick-up and other advanced services

For more information...

SIP: http://www.cs.columbia.edu/sip

RTP: http://www.cs.columbia.edu/~hgs/rtp

Papers: http://www.cs.columbia.edu/IRT